PARTIAL DIFFERENTIAL EQUATIONS

XAVIER ROS OTON

1. Overview and preliminaries

(1) Let $f : \Omega \subset \mathbb{C} \to \mathbb{C}$ be any holomorphic function, and let $u := \text{Re} f$ and $v = \text{Im} f$ be the real and imaginary parts of f .

Prove that, if we identify $\mathbb{C} \simeq \mathbb{R}^2$, they satisfy $\Delta u = 0$ and $\Delta v = 0$ in $\Omega \subset \mathbb{R}^2$.

(2 points)

(2) Assume \vec{E} and \vec{B} solve Maxwell's equations in \mathbb{R}^3

$$
\partial_t \vec{\mathbf{E}} = \text{curl } \vec{\mathbf{B}}
$$

$$
\partial_t \vec{\mathbf{B}} = -\text{curl } \vec{\mathbf{E}}
$$

$$
\text{div } \vec{\mathbf{B}} = \text{div } \vec{\mathbf{E}} = 0.
$$

Prove that

$$
\partial_{tt}\vec{\mathbf{E}} - \Delta\vec{\mathbf{E}} = 0
$$
 and $\partial_{tt}\vec{\mathbf{B}} - \Delta\vec{\mathbf{B}} = 0.$

(2 points)

(3) Prove that, for any radial function $u \in C^2(\mathbb{R}^n)$, we have

$$
\Delta u = \partial_{rr} u + \frac{n-1}{r} \partial_r u = r^{1-n} \partial_r (r^{n-1} \partial_r u),
$$

where $r = |x|$.

(3 points)

(4) Let $f \in C^{\infty}(\mathbb{R}^n)$. Prove, for $k = 1, 2, ...,$ the following Taylor expansion

$$
f(x) = \sum_{|\alpha| \le k} \frac{1}{\alpha!} D^{\alpha} f(0) x^{\alpha} + O(|x|^{k+1}) \quad \text{as} \quad x \to 0,
$$

where the sum is taken over multiindices $\alpha \in \mathbb{N}^n$.

Hint: Fix $x \in \mathbb{R}^n$ and consider the function of one variable $g(t) := f(tx)$.

(2 points)

(5) Show that for any C^2 function f we have

$$
\oint_{B_r(x_0)} f - f(x_0) = c_n r^2 \Delta f(x_0) + o(r^2),
$$

where $f_E f = \frac{1}{|E|}$ $\frac{1}{|E|}\int_E f$ is the average of f over the set E, and $c_n > 0$ is a constant. Hint: Use Taylor's expansion.

(3 points)

(6) Show that for any C^1 vector field $\vec{F} : \mathbb{R}^n \to \mathbb{R}^n$ we have

$$
\operatorname{div} \vec{F}(x) = \frac{1}{|B_1|} \lim_{r \to 0} \int_{\partial B_1} \vec{F}(x + r\theta) \cdot \theta \, dS(\theta).
$$

(2 points)

(7) Let $\Omega \subset \mathbb{R}^n$ be any bounded smooth domain. Deduce the following integration by parts formulas from the divergence theorem: For any $f, g \in C^1(\overline{\Omega})$ we have

$$
\int_{\Omega} f \, \partial_{x_i} g = - \int_{\Omega} g \, \partial_{x_i} f + \int_{\partial \Omega} f \, g \, \nu_i,
$$

where ν_i is the *i*-th component of the normal vector ν . In particular, for any $u, w \in$ $C^2(\overline{\Omega}),$

$$
\int_{\Omega} \nabla w \cdot \nabla u = -\int_{\Omega} w \, \Delta u + \int_{\partial \Omega} w \, \nabla u \cdot \nu.
$$
\n(3 points)

(8) Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain. Integrate by parts to prove the interpolation inequality

$$
\|\nabla u\|_{L^2(\Omega)}^2 \le C \|u\|_{L^2(\Omega)} \|D^2 u\|_{L^2(\Omega)}
$$

for all $u \in C_c^{\infty}(\Omega)$.

(2 points)

(9) Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain. Prove the *trace inequality*

$$
\int_{\partial\Omega}|u|^2 \le C\left(\int_{\Omega}|\nabla u|^2 + |u|^2\right)
$$

for all $u \in C^{\infty}(\overline{\Omega})$.

<u>Hint</u>: Use that there exists a smooth vector field \vec{X} such that $\vec{X} \cdot \nu \geq 1$ on $\partial \Omega$. Then, apply the divergence theorem to $\int_{\partial\Omega} u^2 \vec{X} \cdot \nu$ to prove the result.

(2 points)

(10) Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain.

(i) Use the previous exercise to show that there is a bounded linear operator

$$
\text{Tr}: H^1(\Omega) \to L^2(\partial\Omega)
$$

such that Tr $u = u|_{\partial\Omega}$ for any $u \in C^{\infty}(\overline{\Omega})$. We call it the *trace* operator.

(ii) Prove that there does not exist a bounded linear operator

$$
\text{Tr}: L^2(\Omega) \to L^2(\partial\Omega)
$$

such that Tr $u = u|_{\partial\Omega}$ for any $u \in C^{\infty}(\overline{\Omega})$.

Note: This means that we cannot talk about the boundary values of a function in $L^2(\Omega)$, however all functions in $H^1(\Omega)$ do have boundary values in $L^2(\partial\Omega)$.

(4 points)

(11) Prove the Poincaré inequality in dimension $n = 1$, that is:

$$
\int_{a}^{b} u^{2} \leq C_{a,b} \int_{a}^{b} |u'|^{2} \quad \text{if} \quad u(a) = u(b) = 0
$$

for some constant $C_{a,b}$ depending only on a and b.

(3 points)

(12) Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain. Use Rellich compactness theorem to prove the following Poincaré inequality

$$
||u - \bar{u}_{\Omega}||_{L^2(\Omega)} \le C||\nabla u||_{L^2(\Omega)} \quad \text{for all} \quad u \in H^1(\Omega),
$$

where $\bar{u}_{\Omega} = \frac{1}{|\Omega|}$ $\frac{1}{|\Omega|} \int_{\Omega} u$ is the average value of u in Ω , and C depends only on Ω and n. <u>Note</u>: We do not assume $u = 0$ on $\partial\Omega$ here.

(4 points)

(13) Prove that for any $u \in C_c^{\infty}(\mathbb{R}^n)$, we have

$$
\sup_{\mathbb{R}^n} |u| \le \|D^n u\|_{L^1(\mathbb{R}^n)}
$$

where $D^n u$ denotes the *n*-th derivatives of u.

Hint: Use the Fundamental Theorem of Calculus n times, with respect to the variables $x_1, x_2, ..., x_n.$

(2 points)